Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data

نویسندگان

چکیده

In this paper, we consider a two-term time-fractional diffusion-wave equation which involves the fractional orders α ∈ (1, 2) and β (0, 1), respectively. By using piecewise linear Galerkin finite element method in space convolution quadrature based on second-order backward difference time, obtain robust fully discrete scheme. Error estimates for semidiscrete schemes are established with respect to nonsmooth data. Numerical experiments two-dimensional problems provided illustrate efficiency of conform theoretical results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Error Estimates with Smooth and Nonsmooth Data for a Finite Element Method for the Cahn-Hilliard Equation

A finite element method for the Cahn-Hilliard equation (a semilinear parabolic equation of fourth order) is analyzed, both in a spatially semidisCrete case and in a completely discrete case based on the backward Euler method. Error bounds of optimal order over a finite time interval are obtained for solutions with smooth and nonsmooth initial data. A detailed study of the regularity of the exac...

متن کامل

Error Estimates for Approximations of Distributed Order Time Fractional Diffusion with Nonsmooth Data

In this work, we consider the numerical solution of a distributed order subdiffusion model, arising in the modeling of ultra-slow diffusion processes. We develop a space semidiscrete scheme based on the Galerkin finite element method, and establish error estimates optimal with respect to data regularity in L2(Ω) and H1(Ω) norms for both smooth and nonsmooth initial data. Further, we propose two...

متن کامل

Some New Error Estimates of a Semidiscrete Finite Volume Element Method for Parabolic Integro-differential Equation with Nonsmooth Initial Data

A semidiscrete finite volume element(FVE) approximation to parabolic integrodifferential equation(PIDE) is analyzed in a two-dimensional convex polygonal domain. Optimal order L-error estimates are derived for both smooth and nonsmooth initial data. More precisely, for homogeneous equations, an elementary energy technique and duality argument is used to derive optimal L-error estimate of order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling of Natural Phenomena

سال: 2021

ISSN: ['1760-6101', '0973-5348']

DOI: https://doi.org/10.1051/mmnp/2021007